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Abstract  

The structure of the incommensurate phase of Fel_xO 
(x = 0.098) with a cubic fundamental cell [a = 
4.30 (4)A] has been analyzed on the basis of a 
six-dimensional expression of the structure factor and a 
six-dimensional space group u~m3,~ The structure is • Pm3m" 

described as a threedimensionally modulated struc 
ture with a wavy distribution of Fe vacancies and a 
slight displacive modulation with incommensurate 
wavevectors k ~ = 0.398a*, k 2 = 0.398b*, k 3 -- 

0.398e*. Methods of obtaining six-dimensional sym- 
metry and the possible form of the modulation wave in 
the three-dimensionally modulated structure are shown. 

1. Introduction 

The analysis of CuAu II based on a four-dimensional 
space group was shown in the previous paper 
[Yamamoto (1982b), hereafter (II)]. In this paper, the 
structure-factor formula derived in the first paper 
[Yamamoto (1982a), hereafter (I)] is applied to the 
known structure of wustite, Fel_x O, which has three- 
dimensional modulation (Koch & Cohen, 1969), to 
demonstrate an analysis based on the formula and a 
six-dimensional space group. Because of the non- 
stoichiometry of this material, the satellite reflections 
originate from a periodic distribution of vacancies. This 
density modulation is accompanied by the displacive 
modulation. Thus wustite is a typical example of 
three-dimensional density modulations. 

t A preliminary report has been published (Yamamoto, 
Nakazawa & Tokonami, 1979). 

The three-dimensional modulation shows charac- 
teristic satellite reflections: all reflections are specified 
by six integers hl-h 6 as 

h = h 1 a* + h 2 b* + h 3 C* + h 4 k I + h 5 k 2 + h 6 k 3, (1) 

where a*,b*,c* are the unit vectors in the reciprocal 
lattice of the fundamental structure, which is the 
rock-salt §tructure in the present case. kl,k2,k 3 are 
fractional vectors in the three-dimensional space R 3, 
each of which cannot be described by an integral linear 
combination of the others. 

Wustite, Fe~_xO with x = 0.098, has the wave- 
vectors k I = 0.398a*, k 2 = 0.398b*, k 3 -- 0.398e*. 
This is a well known example of an incommensurate 
structure with the three-dimensional modulation. This 
three-dimensional modulation is analyzed by using data 
of Koch & Cohen (1969). The aim of the present paper 
is to describe the method of analyzing the modulated 
structure with the three-dimensional modulation based 
on a six-dimensional space group. 

2. Slx-dimensional space group 

The symmetry of a three-dimensionally modulated 
structure is described by a six-dimensional space group 
(Janner & Janssen, 1977). The unit vectors of a 
six-dimensional reciprocal lattice are given by b~ = a*, 
b 2 -- b*, b 3 -- e*, b4 = k I + dl, b5 = k2 + d2, b6 = k3 + 
d3, where d l , d 2 , d  3 a r e  the unit vectors perpendicular to 
R 3. The unit vectors reciprocal to these are aj = a - 

3 kld,,b3 e - Z ~ , k ~ d i  ~=lk~ d t, b 2 = b -  ~ i=1  = 
and a3+ i ----- d i (i --  1,2,3), where a,b,c are the unit 
vectors of the fundamental structure which are recipro- 
cal to a*,b*,e* and bi bi bi "1,"2,"3 are the a*,b*,e* com- 
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Table 1. Symbols f o r  rotation operators in the point 
group m3m 

The symbol next to an operator is the vector formed from the vector 
x,y,z by the operator, 

E xyz I 5c)~ C~ x~y S;x 5czy 
C2x xp~ o x Ycyz C~y zyYc $2 v ~ x  
c~  ycy~ o~ xpz C~ pxz s;~ )'~ 
C2~ Ycpz t% xy~ C~ xzS' S ~  xzy 
C ~ zxy S 6~ ~Ycp C ~y ~yx S ~y z.f'2 
C'~2 ~xp S 6z zycy Cz~ yycz S ~ pxi 
C ~3 zYcY S ;3 zxp Cz, yx2 Oda y2z 
C;4 gx3) S64 2xy C2b y, Yc£ ado y_XZ 
C 31 yzx S ~, p~2 C2~ zpx Odc zyx 
C~2 y25¢ S~2 )ZX C2d Yczy tTdd Xff,); 
C~ )zY¢ S~3 y2x C2e 7@X Ode zyx 
C34 yzx S;4 yz2 C2f Yc$p trar xzy 

ponents of k( Any reciprocal-lattice vector h' in R 6 is 
h' = ~ 6= 1 hi bi. The observed reflection (1) is regarded 
as the projection of this six-dimensional lattice point 
onto the usual three-dimensional space spanned by 
a*, b*, c*. 

A symmetry operator in R 6 transforms the reciprocal 
lattice in R 6 into itself. The lattice type mentioned 
above strongly limits the types of symmetry operators. 

From the transformation property of the reciprocal 
unit vectors b I = y6__ ~R U bj (a primed letter represents 
the quantity after transformation) we have R u = 0 for i 
< 3 , j  _> 4 and i _> 4 , j  < 3 (Janner & Janssen, 1977).5- 
The first 3 x 3 part of this matrix is the same as the 
matrix representation of the rotation operator in the 
usual three-dimensional space R 3 because b~ = a*, b 2 = 
b*, b a = e*. The remaining 3 x 3 part is equal to the 
first 3 x 3 part in the present case because the former is 
the transformation matrix for the wavevectors and 
k~,k2,k a are parallel to a*,b*,e* and have the same 
length. 

Since the three-dimensional sublattice spanned by 
bl,b2,b 3 is cubic, we can consider 48 rotation operators 

~" We take the centered lattice whenever the wavevectors lie on 
the first Brillouin-zone boundary of the fundamental structure. In 
the centered lattice, the wavevectors are in the Brillouin zone and 
the relations mentioned above are fulfilled by any three- 
dimensionally modulated structures. 
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Fig. 1. Satellite reflections around the 002000 fundamental reflec- 
tion after Koch & Cohen (1969). k',k2,k 3 show the wavevectors 
of the modulation wave. 

included in the three-dimensional point group m3m (see 
Table 1). Corresponding to these, there are 48 rotation 
operators in R 6 which have the same matrix elements in 
the two block-diagonal parts and transform the 
reciprocal lattice in R 6 into itself. 

To determine the symmetry operators (Iqlt) in R6,  

the translation vector t must be determined from the 
extinction rules. The satellite reflections appear only 
around the fundamental reflections allowed by the 
F-centered lattice of the fundamental NaCl-type struc- 
ture (see Fig. 1). Therefore, the extinction rules of 
wustite for general reflections are 

h 1 + h 2 = 2n, (2) 

h 2 + h 3 = 2n, (3) 

h 1 + h 3 = 2n, (4) 

where n is an integer. 
An important concept for determining the space 

group of the modulated structure is the average 
structure, from which we can find the a~,a2,aa compo- 
nents of non-primitive translation l'. This is defined by 
the electron density integrated with respect to x4,xs,x6. 
The electron density of p ( x l , . . . ,  x6) in R6 is invariant 
for the symmetry operators in R 6" when x i (i = 
1 , . . . , 6 )  are transformed into x~ (i = 1 , . . . ,  6) by 
(Iq It), the electron density fulfills p(x ~ . . . .  , x'6) = 
p ( x ~ , . . . ,  xs). Then, after integration, we have 
~(x~,x'2,x'3) = b(Xl,X2,X3) for the electron density of 
the average structure. This expression shows that the 
electron density of the average structure is invariant for 
the symmetry operator which is given by the first 3 × 3 
part of R and r l , h , r  3 (al,a2,a 3 components of ~) 
because FI is (3 + 3)-reducible. These symmetry 
operators are included in a three-dimensional space 
group of the average structure. 

In the present case, the space group of the average 
structure is expected to be one of Fm3m, F£43m, F432 
from the extinction rules for the fundamental reflec- 
tions. It is known that the fundamental structure of 
wustite is of the NaC1 type (space group Fm3m and Fe 
and O are located at 0,0,0 and ½,0,0), but Fe partially 
occupies the tetrahedral site ¼,],~ (Koch & Cohen, 
1969). In this case possible_space groups of the average 
structure are Fm3m and F43m. In F43m, there are two 
tetrahedral sites ~,~,~ and ~,~,~, but these are equivalent 
in Fm3m. In order to determine the average structure, 
structure analyses based on these space groups were 
made using 42 fundamental reflections (six reflections 
suspected of secondary extinction were dropped). For 
F43m, the model in which the site 1 ~ ~ is partially 
occupied by Fe was employed. Parameters in both 
cases are only the temperature factors and an oc- 
cupation ratio between the octahedral and tetrahedral 
Fe sites. In both cases, the tetrahedral site was slightly 
occupied with an occupation probability less than 0.01 
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and almost the same R factor was obtained (R = 0.06). 
Thus both possibilities are considered in the following. 

The components r4,rh,r 6 are obtained from the 
extinction rules including satellite reflections. The 
extinction rules (2)-(4) imply that there exist the 
centering translations (El½,½,0,0,0,0), ( E '  I~,0,~,0,0,0), 
(El0,½,½,0,0,0) [where the translation vector l" is 
represented by its a~ (i = 1 . . . .  ,6) components], 
indicating that the Bravais lattice is non-primitive. We 
call this an F(1,2,3)-centered lattice for convenience. 
There is no additional extinction rule attributed to the 
presence of hyper glide planes or hyper screw axes. 
Therefore, we can take t = 0 for 48 symmetry 
operators which have the same matrix elements for the 
block-diagonal 3 x 3 parts as those of the point group 
m3m. The resulting space group is generated from these 
and the centering translations of the F(1,2,3)-centered 
lattice. 

3. M o d u l a t i o n  w a v e  

The waveform of the modulation function is limited 
when atoms are located at the special positions in the 
space group of the average structure. We consider the 
NaCl-type fundamental structure and ignore Fe atoms 
in the tetrahedral sites for a while. Then the space 
group is Fm3m and Fe is located at 0,0,0 and O at 
½,0,0. In these special positions, the coordinates are 
transformed into themselves under 48 operators 
because the site-symmetry group is m3m in both sites. 
Corresponding to these, there are 48 operators in the 
space group in R 6 for which the modulation function is 
invariant. These construct the site-symmetry group G s 
in R 6. The group G s for the Fe site is generated by the 
five operators (C2~10,0,0,0,0,0), (C2z 10,0,0,0,0,0), 
(as, 10,0,0,0,0,0), (C3+~ 10,0,0,0,0,0) and (II0,0,0,0,0,0), 
and G s for the O site is generated by (C2x 10,0,0,0,0,0), 
(C2~11,0,0,0,0,0), (aeal½,--½,0,O,O,O), (C +, ' ' I ~,--~,0,0,0,0) 
and (II 1,0,0,0,0,0) (for the symbols, see Table 1). 

The modulation functions in the three-dimensional 
modulation are generally written as 

4,.~ 5,.~. 6 ! X ~  + = ui(,,i,,,,,~) f~w + c.c. , (5) 
n I .t/3 

5,x6)=½ E B(~, , . .~ , ) f~+c .c .  , (6) 
nl)/'/2,n 3 

P " ( k ~ , k "  - " " ] 5'x6) = ½t Z P(n,.n~.n~, g . ,  + c.c. , (7) 
~nl,tl2)n 3 J 

wheref~ w is the plane wave exp {27r/[nlk f + n2J ~' + 
n 3 kf]  } and we take isotropic temperature factors. The 
notation is the same as in (I): x f ( J ~ , J "  TM 5,x6) is the 
positional vector of the #th atom in the unit cell, 
B (x4,x~,x~) is the isotropic temperature factor, and 

- ~  - l l  -/.t P (x4,xs,x6) is the occupation probability of the #th 
atom; these are continuous functions of , ' "  ~'" ,7"" (the -~ 4,.'~ 5 ,.~ 6 

bar denotes quantities belonging to the fundamental 
structure). There are only two independent atoms in the 
present case, so that Fe and O are specified by p = 1 
and # = 2, respectively. 

For any operator in Gs, the modulation functions 
must be invariant. The possible modulation-wave forms 
are obtained from the following formulae. For atomic 
position, we have 

1 
, - I t - , - ~ l  ~_ - N  X (X4 ,X5 ,X; )} i  , ( 8 )  t ( R , r )  " - '  ' 

(Rl t )  

where N is the order of G s and k~+ i = ~= 1 R~[ i , j (X~ -- 
rj). The sum of (flit, is over all elements of Gs. 
Similarly, for the isotropic temperature factor and the 
occupation probability, we have 

-/~ -~ -/z 1 
n (x4,Xs,X6) - N  Z B" ( f c '  ~.'' z t ,  = 4,-5,~6), (9) 

(RIt)  

I 
I t  - / . t  I I  - I t  = P (x4'xs'x6) ~ Z PU(.~,k;,k;) ,  (10) 

(R,r) 

and for the anisotropic temperature factor, we have 

1 
B/~(.~ : t t 4 , x 5 , x ~ ) = ~  - - "  - Z{RB~(xr4,fc;,fcP6)R}tj. (11) 

(R I%) 

Substituting the right-hand sides of (5)-(?) into 
(8)-(]0),  we have the possible Fourier terms in Table 
2, where the Fourier terms with n I = n 2 = n 3 = ] and 
higher-order terms are dropped because hlh2h 3 +_I 
+ I  + I  and h~h2h 3 200 etc. are weak and almost all 
such reflections are not observed. 

Now we consider the model with tetrahedral Fe 
atoms which is specified by /t = 3. The tetrahedral 
position is the special position defined by the 
site-symmetry group which is generated by 
( C 2 x  [ 0 , ½ , ½ , 0 , 0 , 0 ) ,  ( C 2 2  1 l I~,~,0,0,0,0), (aab I0,0,0,0,0,0) and 

Table 2. The Fourier terms for the octahedral Fe and 
0 sites appearing in the modulation functions 

U t (X 4 ,X 5 ,X 6 ), B (x 4 ,% ,x 6 ) andP"(2~,2~,2g) 

In the following, c(I,2,3), s(1,-2,3) etc. mean cos2n(.t~' + 
22~' + 32g), sin 2n(.~g - 2.~' + 3~%') etc. Possible Fourier terms 
for Fe and O are the same. 

D i s p l a c e m e n t  

Coeff ic ient  Four i e r  t e r m  

(I)  Im u,.00 ) s(1,0,0) a 1 + s(0,1,0) a 2 + s(0,0,1) a 3 
(2) Im u,m0) [s( l , l ,0)  + s(l ,0,1) + s ( l , - l , 0 )  + s ( l , 0 , -1 ) l  aj 

+ [s(0,1,1) + s(1,1,0) + s (0 ,1 , -1)  + s ( - l , l , 0 ) ]  a 2 
+ [s(l,0,1) + s(0,1,1) + s ( -1 ,0 ,1)  + s(0,-1,1) l  a 3 

I so t rop i c  t e m p e r a t u r e  f ac to r  and  o c c u p a t i o n  p robab i l i ty  

Coeff ic ient  Four i e r  t e rm  
(1) Re B(00o,, Re P~ooo} c(0,0,0) 
(2) Re B.00) , Re P.00) c(l ,0,0) + c(0,1,0) + c(0,0,1) 
(3) Re B.10), Re P.10) c ( l , l ,0 )  + c(0,1,1) + c(l,0,1) 

+ c ( l , - 1 , 0 )  + c ( 0 , 1 , - l )  + c ( - l , 0 , 1 )  
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Table 3. Additional Fourier terms for  the tetrahedral 
site 

The Fourier terms for this site are given by the terms in Table 2 
and the following terms. 

Displacement 

Coefficient Fourier term 

(1) Reuii01 , lc(0,1,1)--c(0,-1,1)l al 
+ [c(l,0,1) -- c(--1,0,1)l a~ 
+ [c(1,1,0) -- e(1,--l,0)l a~ 

(C~-~ 10,0,0,0,0,0). This position necessitates the Fourier 
terms shown in Table 3 in addition to those in Table 2 
because of the low site symmetry. In this model, there 
are two possibilities for the space group in R 6 

corresponding to the space groups of the average 
DFm3m structure: Fm3m and F43m. These are written as • v,,,3,, 

and .I oF~3mp43m according to Janssen (1980, private com- 
munication). In pF~3m the Fourier terms in Table 3 are 

" P 4 3 m '  

also possible for the octahedral Fe and 0 sites because 
the site symmetry is the same as that in the tetrahedral 
site. 

4. Modulated structure 

For the refinement of the structure, the same least- 
squares program was used as in (II). As shown in (I), 
the structure factor in the present case is written as 

1 1 1 

F h, = ~ 13" I dx~ i d . ~  t d J f  f " (h )P" (~"  ~-" ~-.~ • . . 4,.,~, 5 ,.o. 6 / 
p(RIr) 0 0 0 

x exp I--B" ()? ~,)?" -" 5 , X 6 )  h 2 

- I t  -M, - ~  I. + 2zci ~ {hs[Rx" (x4 ,xs ,x6) l  ~ + h~ r s } 
J J 

(12) 

The structure was refined first based on p F m 3 m  
~ P m 3 m '  

neglecting Fe in the tetrahedral site. The integration in 
(12) was made by using Gauss's method with four 
divisions. The refinement was started from the struc- 
ture which has three sinusoidal modulations along the 
a,b,e axes for the occupation probability and the usual 
isotropic temperature factor of 0.5 A ~. To avoid the 
differential matrix becoming singular, the atomic 
position is slightly shifted from that of the fundamental 
structure. The R factor of this starting point was 0.446. 
Since the satellite reflections with h4hsh 6 + 100, 0+ 10 
and 00+1 have strong intensity, the five parameters 
UI(100)," B~'ooo~ (g = 1, 2) and P~tool were refined first by 
three cycles and R = 0.174 was obtained using all 
observed reflections (42 fundamental and 110 satellite 
reflections measured with Mo K~t and Co Ka 
radiations). Next, adding the parameters u~'~o ~ (p = I, 

,,'(02(o"] 

I "  .' / t I  l l l l / !  X.. ,,~"x~ ~ l l '  " I ~ \ \ \ \  I 
- , X ,  , ) ( 

k ~ I l f~.- ,  ; ' i f ¢ ~ \ i ,  - , : . " ' ,$ , / /q 
l (o2-~'¢~" c C~(O~C'" ~)  - / ( ~ " C ( o  )1 
k " 1 ~  5 ~ I/ , , ' x -  -~v/,,,,\--) 11~ ," ~,hv( \vA 

al 
Fig. 2. The difference Fourier map of wustite near the tetrahedral 

site. The figure shows Po(X~ . . . . .  x 6) - pc(x~ .. . . .  x6) at x 3 = ¼, x4 
= x5 = x6 = 0.096. 

2) and P~10), eight parameters were refined giving R = 
0.167. At this stage, the modulation function for the 
occupation probability of Fe was plotted and it was 
noticed that this function takes a large negative value 
near the origin. In addition, the difference Fourier map 
(Fig. 2) at x3 = 0.25, x4 = x5 = x6 = 0.096 showed a 
strong peak near x~ = x2 = 0.25 implying that the atom 
is located at the tetrahedral site with fractional 
occupation probability. Therefore, the second model 
having an Fe atom in this site was considered. 

In this model, Fe atoms occupy the octahedral site 
I 3 and the tetrahedral site, so that Re PC000) + Re PC0001 = 

0.902 and there are the two possibilities mentioned 
DFm3m before. The refinement based on -pm3m converged to R 

= 0. I I I giving a mean occupation probability for the 
tetrahedral site of 0.015 and the difference Fourier map 
showed no remarkable peak at the tetrahedral site. 
However, the modulation function for the occupation 
probability of the octahedral Fe site also took a large 
negative value at the origin. Therefore, a restricted 
least-squares method developed in a previous paper 
(Yamamoto, 1981) was applied after slight 
modification: the square of the weighted R factor plus 
the penalty function defined by 

3 1 1 1 
- tt -u -ta -it 2 ~ .( dx4 f  c~5 Jdx6lg (x4 ,xs ,x6)}  (13) 

u = l  0 0 0 

was minimized, where g"(.~" ~'" ~-"x takes a value 4,- '* 5 ,-'v 6 / 

2 P " ( ) ? f , ~ " - "  5,x6) < 0, 2{1 s, x 6) for P"(.~ ~,.~" - " 
P" ( J~ , .~ , J f ) }  for P"(.~f,.~',.~f) > 1 and otherwise 
zero. This method is effective for constraining the 
occupation probability within the physically reason- 
able range. The final refinement was made by using 
Gauss's integrals with five divisions in order to reduce 
computational errors. 
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Table 4. The R factors in models 1 and 2 

R 0 and R~ represent the R factors for the fundamental and 
satellite reflections. 

Mo Ka Co Ka 
R R o Rl Rl 

Model 1 0.168 0.065 0.236 0.411 
Model 2 0.110 0.057 0.166 0.176 

Table  5. Final parameters in the model including 
tetrahedral Fe atoms (model 2) 

For the coefficients, refer to Tables 2 and 3. The standard 
deviations are in parentheses. Fe(1) and Fe(2) represent the octa- 
hedral and tetrahedral Fe atoms, respectively. 

The model belonging to the space group DFrn3m x P m 3 m  

converged to R = 0 .110  after six cycles. Starting from 
the resulting parameters ,  the model with the space 
g r o u p  pF4_3m was refined but  an improvement  of  the R 

" P 4 3 m  
factor was not  found;  therefore, this is rejected. The R 
factors for the fundamenta l  and satellite reflections in 
the first model (model 1) and the second model (model 
2) are shown in Table 4 and the final parameters  in 
model 2 are shown in Table 5.* 

The R factors for the satellite reflections were 
notably  reduced in model 2 (see Table 4), indicating 
that  the te trahedral  site is fract ionally occupied by Fe. 
F rom Table 5, the mean occupat ion  probabil i ty of  the 
tetrahedral  Fe site is 0 .06.  

Displacement (x 104) 

- Im Ul,o0 ) - Im u~,10 ~ Re ul~0~l 

Fe(1) -139 (4) -33 (4) 
Fe(2) 256 (161) -51 (72) 234 (52) 
O 78 (19) 109 (14) 

Temperature factor (A 2 × 10 2) 

Re B~ooo ) Re B.oo) Re B.~o} 

Fe(1) 50 (7) 0 (8) 4 (8) 
Fe(2) 253 (54) 
O 119 (14) 15 (12) 60 (10) 

Occupation probability (x 102) 

Re P~oool 
Fe(1) 77 (1) 
Fe(2) 6 (l) 
O 100 

Re P.oo~ Re P.~o} 
--16 (1) --5 (1) 

6 (1) 3 (1) 

5. Superstructure model  

To compare  the result with the previous one (Koch & 
Cohen,  1969), we calculate the vacancy  distribution 
and displacements of  wustite in the case of  kl = k 2 = k] 
= ~, which corresponds to the 3X-cell model of  Koch  
& Cohen.  The posit ions and occupat ion  probabilit ies 
calculated by using the parameters  in Table 5 are 
shown in Table 6 together with the results of  Koch  & 

* A list of structure factors has been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
36663 (4 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH 1 2HU, England. 

Table 6. Parameters in the 3X-cell model calculated from the parameters in Table 5, and the parameters in 
model 4 of Koch & Cohen (1969) 

3X-cell model Model 4 of Koch & Cohen 

Equipoints x y z P x y z P 

Fe 
Pi~3m 
Pm3m 

O 
Pm3m 

4(e) 0.090 0.090 0.090 1.0 
8(g) 0.081 0.081 0.081 0.33 
l(a) 0.0 0.0 0.0 -0.03 0.0 0.0 0.0 0.0 

12(/) 0.160 0.160 0.0 0.32 0.166 0.166 0.0 0.0 
6(e) 0.326 0.0 0.0 0.53 0.329 0.0 0-0 1.0 

12(/) 0.328 0.328 0.0 0.85 0.329 0.329 0.0 1.0 
12(h) 0.5 0.163 0.0 0.80 0-5 0.167 0.0 1.0 
24(m) 0.327 0.163 0.163 0.71 0.324 0.158 0.158 1.0 
24(l) 0.5 0.330 0.166 0.96 0.5 0.333 0.167 1.0 

8 (g) 0.331 0.331 0.331 0.93 0.330 0.330 0.330 1.0 
6(f) 0.5 0.5 0.333 0.97 0.5 0.5 0.333 1.0 
3(c) 0.5 0.5 0.0 1.04 0.5 0.5 0.0 1.0 

6(e) 0.182 0.0 0.0 0.172 0.0 0.0 
3(d) 0.5 0.0 0.0 0.5 0.0 0.0 

24(k) 0.345 0.172 0.0 0.338 0.168 0.0 
8(g) 0.175 0.175 0.175 0.174 0.174 0.174 

24(m) 0.336 0.336 0.163 0.338 0.338 0.160 
12(j) 0.5 0.166 0.166 0.5 0.167 0.167 
12(./') 0.5 0.326 0.326 0.5 0.333 0.333 

l(b) 0.5 0.5 0.5 0.5 0.5 0.5 
6(f) 0.5 0.5 0.156 0.5 0.5 0.167 
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Fig. 3. The vacancy distribution in the 3X-cell model. The black 
shading represents the occupation probability of the octahedral 
Fe site. The almost-occupied sites (P >_ 0.8) are regarded as 
completely occupied for simplicity. 

basis of a six-dimensional space group. The analysis 
describes methods of finding the six-dimensional space 
group from the extinction rules and the space group of 
the average structure,* and of determining possible 
modulation-wave forms at the special positions. The 
refinement was started from a single sinusoidal 
modulation for the occupation probability of the Fe site 
and smoothly converged from R = 0.446 to 0.110. 

The method determines the vacancy distribution and 
atomic positions simultaneously. Thus the method can 
treat the structure including vacancy ordering, and is 
applicable whether the ordering is complete or 
statistical. The method is general, and can be applied to 
any three-dimensionally modulated structures and, 
after slight modifications, to two- or n-dimensionally 
(n = 4 ,5 , . . . )  modulated structures. 

Cohen. It is noted that many positional and occu- 
pational parameters have approximately the same values 
as the previous result, The vacancy distribution in the 
octahedral site is illustrated in Fig. 3, where the black 
shading represents the occupation probability of Fe. 
The principal result is similar to the previous one: the 
vacancies tend to cluster near the origin. However, 
there is an essential difference in the fact that the sites 
1 1 . ½,0,½; 1 0,~,~ in R 3 cannot be completely vacant. To 
obtain Koch's result, we must introduce strong third- 
order harmonics to make the modulation function 
block type. This will lead to strong third-order satellite 
reflections inconsistent with experiment. Another dif- 
ference exists in the distribution of Fe atoms in the 
tetrahedral sites. The present model places the octa- 
hedral cluster near the origin in contrast to the 
tetrahedral one in the previous result. The present 
analysis only gives the statistical structure of wustite, 
so that this structure may have locally the vacancy 
cluster with tetrahedral Fe atoms given by Koch & 
Cohen. 

6. Summary and concluding remarks 

It has been shown that the three-dimensionally 
modulated structure of wustite can be analyzed on the 

The author expresses his thanks to Dr H. Nakazawa 
for valuable discussions and suggestions during the 
present work. 

* Recently, Janner & Janssen (1979) gave a complete theory for 
calculating all (3 + n)-dimensional modulated-structure space 
groups based on a knowledge of 3- and n-dimensional space groups. 
A complete list of space groups for one-dimensionally modulated 
structures is now available (de Wolff, Janner & Janssen, 1981). 
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